
Data Analyst

PeopleCert Data Science

Three-Day Course

•
Copyright Inform

ation

2

The contents of this workshop are protected by copyright and can be reproduced under the Terms of Use agreed
between PeopleCert and the ATO using this material only.

Material in this presentation has been sourced from the bibliography listed in the certification’s Syllabus. All software-
related images are used for educational purposes only and may differ across time.

No part of this document may be reproduced in any form without the written permission of PeopleCert International
Ltd. Permission can be requested at www.peoplecert.org.

e-mail: info@peoplecert.org, www.peoplecert.org

Copyright © 2022 PeopleCert International Ltd.

All rights reserved. No part of this publication may be reproduced or transmitted in any form and by any means
(electronic, photocopying, recording or otherwise) except as permitted in writing by PeopleCert International Ltd.
Enquiries for permission to reproduce, transmit or use for any purpose this material should be directed to the publisher.

DISCLAIMER

This publication is designed to provide helpful information to the reader. Although every case has been taken by
PeopleCert International Ltd in the preparation of this publication, no representation or warranty (express or implied) is
given by PeopleCert International Ltd. as publisher with respect as to completeness, accuracy, reliability, suitability or
availability of the information contained within it and neither shall PeopleCert International Ltd be responsible or liable
for any loss or damage whatsoever (indicatively but limited to, special, indirect, consequential) arising or resulting of
virtue of information, instruction or advice contained within this publication.)

Copyright Details

PeopleCert Data Science | Data Analyst | Study Guide

http://www.peoplecert.org/
mailto:info@peoplecert.org
http://www.peoplecert.org/

 Delivering exams across 200 countries every year

 Comprehensive Portfolio of 500+ Exams and Growing

 Web & Paper based exams in 25 languages

 2,500 Accredited Training Organizations worldwide

•
PeopleCert: A Global Leader in Certification

PeopleCert: A Global Leader in Certification

3

How to Use This Document

4

This document is your PeopleCert Data Science: Data Analyst Study Guide to help you prepare for
the PeopleCert Data Science: Data Analyst examination (Practitioner level).

It is meant to provide you with a clear outline of everything covered in the course presentation by your instructor that
will be on the PeopleCert Data Science: Data Analyst exam.

Your exams will be closed book. You will be given 60 minutes to complete it. It contains 40 multiple choice questions
and to pass the exam you must achieve a grade of 70% or higher, or a minimum of 28/40 correct responses. For further
details on your exam, including more information on question types and learning objectives, please refer to your course
syllabus.

As you follow along, you may see that some material here is not replicated in the trainer presentation. This study guide
includes questions, activities, knowledge checks, or other material in the presentation that are facilitated verbally by
the instructor. It also does not contain content that is not examinable, but instead is designed to reinforce learning or
add value to your course experience. It also provides valuable links and references, throughout the slides, which you
can explore further to enhance your learning and understanding of the material provided in the study guide.

How
 to U

se this Docum
ent

PeopleCert Data Science | Data Analyst | Study Guide

Syllabus 1/2

•
Syllabus Reference

PeopleCert Data Science | Data Analyst | Study Guide 5

Category​ Topic​ Skill Set​

1.0 Introduction to Data Science 1.1 Overview & Definitions 1.1.1 General Terms and Definitions​

1.2 Key Concepts 1.2.1 Data Analytics

2.0 Programming Skills (with
R/Python)

2.1 Introduction to Programming​ 2.1.1 Key Concepts

2.1.2 Developer Tools

2.2 Basic Programming Skills 2.2.1 Programming Basics

2.2.2 Algorithm Basics

3.0 Data Management​ 3.1 Relational Databases (RDBMS) 3.1.1 Key Terms/Definitions

3.1.2 Database Design

3.1.3 SQL

3.2 New Data Management Methods 3.2.1 NoSQL

3.2.2 Data Lakes

3.3 Business Intelligence 3.3.1 Key Concepts and Basic Use of PowerBI

3.3.2 Extract, Transform, Load (ETL)

4.0 Probability & Statistics 4.1 Introduction to Statistics 4.1.2 Descriptive Statistics

4.2 Advanced Statistical Topics 4.2.1 Time Series

Syllabus 2/2

•
Syllabus Reference

PeopleCert Data Science | Data Analyst | Study Guide 6

Category​ Topic​ Skill Set​

5.0 Machine Learning (ML) and
Artificial Intelligence (AI)

5.1 Machine Learning (ML)​ 5.1.1 Introduction to ML

5.1.2 Algorithms in Machine Learning

​5.2 Artificial Intelligence (AI) 5.2.1 General Concepts of AI​

6.0 Visualization 6.1 Introduction to Visualization​ 6.1.2 Visualization Basics

7.0 Business Skills 7.1 Data Governance 7.1.1 The Need for Data Governance

7.1.2 Data Governance Strategy

7.2 Ethics, Data Privacy and Protection 7.2.1 Data Privacy & GDPR

7.2.2 Anonymize Data

Contents | Learning Objectives

This course aims at obtaining the PeopleCert Data Science: Data Analyst certification, and covers
the following contents, where students/candidate should be able to demonstrate their knowledge
and understanding:

 The basics of Data Science

 Basic Programming Skills (with R/Python)

 Data Management and Relational Databases

 Business intelligence and PowerBI basics

 Probability and Statistics

 The basics of Machine Learning

 The basics of Artificial Intelligence (AI)

 Visualization

 Data Governance, Ethics, Data Privacy and Protection

PeopleCert Data Science | Data Analyst | Study Guide 7

•
Contents | Learning O

bjectives

Objectives:
 The basics of Data

Science

 Basic Programming Skills
(with R/Python)

 Data Management &
Relational Databases

 Business intelligence &
PowerBI basics

 Time Series Basics with
Power BI

 Probability & Statistics

 Data Governance,
Ethics, Data Privacy and
Protection

 The basics of Machine
Learning

 The basics of Artificial
Intelligence

 1.0 Introduction to Data Science
 2.0 Programming Skills (with R/Python)​
 3.0 Data Management​
 4.0 Probability & Statistics
 5.0 Machine Learning and Artificial Intelligence
 6.0 Visualization
 7.0 ​Business Skills

8PeopleCert Data Science | Data Analyst | Trainer Slide Deck

Syllabus Items:

Data Analyst
PeopleCert Data Science

Introduction to Programming

PeopleCert Data Science

30

Introduction to Programming

• Why do you need programming skils for DS/DA/AI/ML?

 All of them require important computer power.

 In order to communicate with a computers, a
language is needed.

 Depending on the goal, you might chose one
programming langauge or other.

 Two languages predominate:

o Python

General-purpose programming language
having multiple data science libraries along
with rapid prototyping.

o R

Language for statistical analysis and
visualization.

31

Source: https://www.analyticsvidhya.com/blog/2020/11/14-must-have-skills-to-become-a-data-scientist-with-resources/

PeopleCert Data Science | Data Analyst | Study Guide

•
PeopleCert Data Science | Introduction to Program

m
ing

Software

Definition:

Computer software, or simply software, is that part of a computer system that consists of encoded information or
computer instructions

• Computer hardware and software require each other and neither can be realistically used on its own

• A collection of computer programs, libraries and related data are also referred to as software

Computer Program
Definition:

A computer program is a collection of instructions that performs a specific task when executed by a computer

• A computer executes the program's instructions in a central processing unit

• A computer program is usually written by a computer programmer in a programming language

• From the program in its human-readable form of source code, a compiler can derive machine code

• Alternatively, a computer program may be executed with the aid of an interpreter

Algorithm
Definition:

An algorithm is a procedure or formula for solving a problem, based on conducting a sequence of specified actions.
In mathematics and computer science, an algorithm usually means a small procedure that solves a recurrent problem.

• A computer program can be viewed as an elaborate algorithm.

• A part of a computer program that performs a well-defined task is known as an algorithm

• An algorithm is a self-contained step-by-step set of operations to be performed

• Algorithms perform calculation, data processing, and/or automated reasoning tasks

Source: https://whatis.techtarget.com/definition/algorithm

Source: https://www.computerhope.com/jargon/s/software.htm

Source: https://en.wikipedia.org/wiki/Computer_program

32PeopleCert Data Science | Data Analyst | Study Guide

•
PeopleCert Data Science | Introduction to Program

m
ing

Classification of Programming Languages

Thousands of programming languages exist today in the market, with various purposes to fulfill.
Some programming languages provide less or no abstraction from the hardware, whereas some
other languages provide a higher level abstraction. To separate programming languages on the
basis of level of abstraction from hardware, they are classified into various categories; however,
there are two main classifications; Low Level and High-Level languages.

33

Programming Languages

Low-Level High-Level

Machine Assembly Imperative Declarative

Object-oriented Procedural

FunctionalQueryLogic

Source: https://codeforwin.org/2017/05/programming-languages-classification.html

PeopleCert Data Science | Data Analyst | Study Guide

•
PeopleCert Data Science | Introduction to Program

m
ing

Programming Languages

The three major families of languages are:
 Machine languages
 Assembly languages
 High-Level languages

The abstraction level of programming languages from
hardware is what distinguishes programming
languages, with machine languages providing no
abstraction, assembly languages providing less
abstraction from the hardware, whereas high level
languages provide a higher level of abstraction.

34

Definition:

A computer programming languages consisting of binary
or hexadecimal instructions which a computer can
respond to directly and execute directly through it’s CPU.

• Comprised of 1s and 0s

• The “native” language of a computer

• Difficult to program – one misplaced 1 or 0 will cause
the program to fail

• Code example:

1110100010101

111010101110

10111010110100

10100011110111

C#,
Java,
PHP…

High Level language

Assembly language

Machine language

Hardware

PeopleCert Data Science | Data Analyst | Study Guide

•
PeopleCert Data Science | Introduction to Program

m
ing

Source: https://codeforwin.org/2017/05/programming-languages-classification.html

Machine Language

Compiled vs. Interpreted Languages

35

Every program is a set of instructions, whether it’s to add two numbers or send a request over the internet. Compilers and
interpreters take human-readable code and convert it to computer-readable machine code. In a compiled language, the target
machine directly translates the program. In an interpreted language, the source code is not directly translated by the target
machine. Instead, a different program, aka the interpreter, reads and executes the code.

Definition:
Compiled languages are converted directly into machine code that the processor can execute.
• Tend to be faster and more efficient to execute than interpreted languages
• Give the developer more control over hardware aspects, like memory management and CPU usage.
• Need a “build” step - they need to be manually compiled first. You need to “rebuild” the program every time you need to make

a change.
Examples of pure compiled languages are C, C++, Erlang, Haskell, Rust, and Go.

Definition:
Interpreters will run through a program line by line and execute each command.
• Interpreted languages were once known to be significantly slower than compiled languages. But, with the development of just-

in-time compilation, that gap is shrinking.
Examples of common interpreted languages are PHP, Ruby, Python, and JavaScript.

Source: https://guide.freecodecamp.org/computer-science/compiled-versus-interpreted-languages/

Source
Code

Platform Specific
Binary

Executable

Operating
System Running

the Program

Compiled Programs
Compiled & Link Execute

Source
Code

Interpreter
running the

program

Interpreted Programs
Compiled

Source
Code

Platform
Independent

bytecode

Python Virtual
Machine Running

the Program
Python Programs

Compiled Execute

PeopleCert Data Science | Data Analyst | Study Guide

•
PeopleCert Data Science | Introduction to Program

m
ing

Application Development Process

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide

Based on https://simplified-it-outsourcing.com/offshore-software-development-methodologies

36

Software Development Methodologies, Paradigms and
Models

• Waterfall

• Prototyping

• Rapid application

• Software engineering

• Waterfall

• Prototyping

• Iterative and incremental development (IID)

 Incremental

 Spiral

• V-Model, Dual Vee Model

• Agile (2001)

• Lean (2003)

• DevOps (2008)

• Distinguish between these methodologies and when they are applied

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 37

Waterfall

Definition:

The waterfall model is a breakdown of project activities into linear sequential phases, where each
phase depends on the deliverables of the previous one and corresponds to a specialization of tasks.

• In software development, it is considered a less iterative and flexible approach, as progress
flows in largely one direction, "downwards" like a waterfall, through the phases of conception,
initiation, analysis, design, construction, testing, deployment and maintenance.

Main phases: Requirements, Design, Construction, Testing, Debugging, Deployment, Maintenance

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide

Requirement

Maintenance

Design

Implementation

Verification

• Requirement Doc.
• Prepare Use Cases

• Software
Architecture

• Map the
Stakeholders

• Construct the Software
• Data Storage & Retrieval

• Install
• Test and Debug

• Check Errors
• Optimize Capabilities

Source: https://en.wikipedia.org/wiki/Waterfall_model

38

Waterfall Model Phases

Requirements Analysis and Definition
 System’s services, constraints and goals = System specification

System and Software Design
 Partitions the requirements to either Software or Hardware systems.
 System architecture

Implementation and Unit Testing
 The Software design is realised as a set of programs or program units

Integration and System Testing

Operation and Maintenance

• The result of each phase is one or more documents which are approved (“signed off”)

Waterfall Model Problems
• Inflexible partitioning of the project into distinct stages

• This makes it difficult to respond to changing customer requirements

• Therefore, this model is only appropriate when the requirements are well-understood

• The drawback of the waterfall model is the difficulty of accommodating change after the
process is underway

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide

Source: https://iansommerville.com/software-engineering-book/

39

Software Development Lifecycle Activities

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 40

Requirements
Elicitation Analysis System

Design
Detailed
Design Implementation Testing

Use Case
Model

Application
Domain
Objects

Subsystems
Solution
Domain
Objects

Source
Code

Test
Cases

Structured by Realized by Implemented
by

Verified byExpressed in
Terms of

Adapted from: https://iansommerville.com/software-engineering-book/

The Software Design Process

Requirements Capturing (1/5)
Definition:
Determine the needs or conditions to meet taking
account of the possibly conflicting requirements of the
various stakeholders, analyzing, documenting, validating
and managing software or system requirements
In systems engineering and software engineering,
requirements analysis encompasses those tasks that go
into determining the needs or conditions to meet for a
new or altered product or project, taking account of the
possibly conflicting requirements of the various
stakeholders, analyzing, documenting, validating and
managing software or system requirements, and is vital
for the success or failure of a software project.
The requirements should be documented, actionable,
measurable, testable, traceable, related to identified
business needs or opportunities, and defined to a level
of detail sufficient for system design.

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 41

Sources: https://iansommerville.com/software-engineering-book/
https://en.wikipedia.org/wiki/Requirements_analysis

•Client Managers
•System End-Users
•Client Engineers
•Contractor Managers
•System Architects

User
Requirements

•System End-Users
•Client Engineers
•System Architects
•Software Developers

System
Requirements

Requirements
Specification

Architectural
Design

Abstract
Specification

Interface
Design

Component
Design

Data Structure
Design

Algorithm
Design

Design Activities

System
Architecture

Software
Specification

Interface
Specification

Component
Specification

Data Structure
Specification

Algorithm
Specification

Design Products

Requirements Capturing (2/5)

Customer Requirements:

Definition:

Statements of fact and assumptions that define the expectations of the system in terms of mission
objectives, environment, constraints, and measures of effectiveness and suitability (MOE/MOS). The
customers are those that perform the eight primary functions of systems engineering, with special
emphasis on the operator as the key customer.

Operational Requirements:

Definition:

Will define the basic need and, at a minimum, answer the questions posed in the following listing:
 Operational distribution or deployment: Where will the system be used?
 Mission profile or scenario: How will the system accomplish its mission objective?
 Performance and related parameters: What are the critical system parameters to accomplish

the mission?
 Utilization environments: How are the various system components to be used?
 Effectiveness requirements: How effective or efficient must the system be in performing its

mission?
 Operational life cycle: How long will the system be in use by the user?
 Environment: What environments will the system be expected to operate in an effective

manner?

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 42

Source: https://en.wikipedia.org/wiki/Requirements_analysis#Types_of_requirements

Requirements Capturing (3/5)

• Architectural requirements: explain what has to be done by identifying the necessary systems
architecture of a system.

• Structural requirements: explain what has to be done by identifying the necessary structure of a
system.

• Behavioral requirements: explain what has to be done by identifying the necessary behavior of a
system.

• Functional requirements: explain what has to be done by identifying the necessary task, action or
activity that must be accomplished. Functional requirements analysis will be used as the top-level
functions for functional analysis.

• Non-functional requirements: requirements that specify criteria that can be used to judge the
operation of a system, rather than specific behaviors.

• Core functionality and ancillary functionality requirements: Murali Chemuturi defined requirements
into core functionality and ancillary functionality requirements. Core functionality requirements are
those without fulfilling which the product cannot be useful at all. Ancillary functionality requirements
are those that are supportive to core functionality. The product can continue to work even if some or
all of the ancillary functionality requirements are fulfilled but with some side effects. Security, safety,
user friendliness and so on are examples of ancillary functionality requirements.

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 43

Source: https://en.wikipedia.org/wiki/Requirements_analysis#Types_of_requirements

Requirements Capturing (4/5)

• Performance requirements
The extent to which a mission or function must be executed; generally measured in terms of
quantity, quality, coverage, timeliness or readiness. During requirements analysis, performance
(how well does it have to be done) requirements will be interactively developed across all
identified functions based on system life cycle factors; and characterized in terms of the degree
of certainty in their estimate, the degree of criticality to system success, and their relationship
to other requirements.

• Design requirements
The "build to", "code to", and "buy to" requirements for products and "how to execute"
requirements for processes expressed in technical data packages and technical manuals.

• Derived requirements
Requirements that are implied or transformed from higher-level requirement. For example, a
requirement for long range or high speed may result in a design requirement for low weight.

• Allocated requirements
A requirement that is established by dividing or otherwise allocating a high-level requirement
into multiple lower-level requirements. Example: A 100-pound item that consists of two
subsystems might result in weight requirements of 70 pounds and 30 pounds for the two lower-
level items.

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 44

Source: https://en.wikipedia.org/wiki/Requirements_analysis#Types_of_requirements

Requirements Capturing (5/5)

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 45

Non-Functional
Requirements

Organizational
Requirements

Product
Requirements

External
Requirements

Dependability
Requirements

Usability
Requirements

Environmental
Requirements

Efficiency
Requirements

Security
Requirements

Regulatory
Requirements

Ethical
Requirements

Legislative
Requirements

Operational
Requirements

Development
Requirements

Accounting
Requirements

Safety/Security
Requirements

Performance
Requirements

Space
Requirements

From Requirements Capturing to Software Design

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 46

DESIGN

Specify the requirements and
read them to check that they
meet their needs. Customers
specify the changes to the
requirements.

System
Customers

Use the requirements
document to plan a bid for the
system and to plan the system
development process.

Managers

Use the requirements to
understand what system is
being developed.System

Engineers

Use the requirements to
develop validation tests for this
system.System Test

Engineers

Use the requirements to
understand the system and the
relationships between its parts.

System
Maintenance

Engineers

1. Requirements
Discovery

2. Requirements
Classification and

Organization

3. Requirements
Prioritization and

Negotiation

4. Requirements
Specification

1. Communicate Input to Design
• What are we solving?
• Why is this function important?
• Clarity to Cross-Functional Team

2. Measurable & Testable
• Verification and Validation are Possible
• Subjective Requirements cannot be

Verified

3. Requirements are Focused
• Audience for Requirement is known

4. Provide Value to Development
• Based on Need: Answer WHY?

5. Free of Specific Design Content

The Requirements Engineering Process

•
PeopleCert Data Science | Introduction to Program

m
ing

47PeopleCert Data Science | Data Analyst | Study Guide

5 Principles to Good Requirements

Feasibility Study
Requirements

Elicitation & Analysis
Specification

Requirements
Specification

Requirements
Validation

Feasibility Report

System Models

User and System
Requirements

Requirements
Document

Class Exercise | Discussion

Consider a simple game, like tic-tac-toe

• Draw a flowchart showing how the game works

• What are some basic requirements?

•
Class Exercise | Discussion

PeopleCert Data Science | Data Analyst | Study Guide 48

• The game is played with 2 players, player A and Player B, using a board

• The board consists of 3x3 matrix

• Player A gets Os and Player B gets Xs

• Players to play alternatively, one turn each

• Draw a players option using an X/O in one of the matrix boxes

• Boxes cannot be reused

• If 3 consecutive boxes at any line direction are identical then this Player wins

•
Sam

ple Solution

Sample Solution

49PeopleCert Data Science | Data Analyst | Study Guide

Unified Modelling Language (UML)

Definition:

A standardized modeling language consisting of an integrated set of diagrams, developed to help
system and software developers for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling and other non-software systems.

During a software development project, different people (i.e., designers, coders, testers, the
customer, auditors) are interested in different aspects of the system, and each of them require a
different level of detail. There are THIRTEEN (13) different type of diagrams; Structural diagrams
show the static structure of the system while Behavior diagrams show the dynamic behavior of the
objects in the system.

• The most popular diagrams are:
 Use Case Diagram (behavior)
 Class Diagram (structural)
 Sequence Diagram (behavior)
 State Transition Diagram (behavior)

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 50

Source: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/

Use Case Diagram

Definition:

A use case diagram is “a representation of a user's interaction with the system that shows the
relationship between the user and the different use cases in which the user is involved”.

Consider the case below:

This would become:

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 51

Medical Receptionist Patient Record System

Transfer
Data

Transfer-Data Use Case Diagram Example
Adapted from: https://iansommerville.com/software-engineering-book/

Class Exercise | Discussion

Using the previous diagram as an example, draw a Use Case Diagram showing:

• A medical receptionist

• 4 Use Cases (any from the below list)

 Register patient

 Unregister Patient

 View Patient Info

 Transfer Data

 Contact Patient

•
Class Exercise | Discussion

PeopleCert Data Science | Data Analyst | Study Guide 52

Register
Patient

Unregister
Patient

View
Patient Info

Transfer
Data

Contact
PatientUse cases involving the role of ‘medical receptionist’

Adapted from: https://iansommerville.com/software-engineering-book/

Use Case Diagram | Discussion

•
Discussion

PeopleCert Data Science | Data Analyst | Study Guide 53

Source: https://iansommerville.com/software-engineering-book/

•
Sam

ple Solution

Use Case Diagram | Sample Solution

54PeopleCert Data Science | Data Analyst | Study Guide

Source: https://iansommerville.com/software-engineering-book/

Class Diagram

Definition:

A class diagram is “a type of static structure diagram
that describes the structure of a system by showing the
system's classes, their attributes, operations (or
methods), and the relationships among objects.

In the diagram, classes are represented with boxes that contain
three compartments:
1. The top compartment contains the name of the class. It is

printed in bold and centered, and the first letter is capitalized.
2. The middle compartment contains the attributes of the class.

They are left-aligned and the first letter is lowercase.
3. The bottom compartment contains the operations the class

can execute. They are also left-aligned and the first letter is
lowercase.

A class with three compartments.

In the design of a system, a number of classes are identified and
grouped together in a class diagram that helps to determine the
static relations between them. With detailed modeling, the
classes of the conceptual design are often split into a number of
subclasses.

•
PeopleCert Data Science | Introduction to Program

m
ing

PeopleCert Data Science | Data Analyst | Study Guide 55
Source: https://en.wikipedia.org/wiki/Class_diagram

Classes and Associations Example

Source: https://iansommerville.com/software-engineering-book/

	Slide Number 1
	Copyright Details
	PeopleCert: A Global Leader in Certification
	How to Use This Document
	Syllabus 1/2
	Syllabus 2/2
	Contents | Learning Objectives
	Slide Number 8
	Slide Number 30
	Introduction to Programming
	Software
	Classification of Programming Languages
	Programming Languages
	Compiled vs. Interpreted Languages
	Application Development Process
	Software Development Methodologies, Paradigms and Models
	Waterfall
	Waterfall Model Phases
	Software Development Lifecycle Activities
	The Software Design Process
	Requirements Capturing (2/5)
	Requirements Capturing (3/5)
	Requirements Capturing (4/5)
	Requirements Capturing (5/5)
	From Requirements Capturing to Software Design
	The Requirements Engineering Process
	Class Exercise | Discussion
	Sample Solution
	Unified Modelling Language (UML)
	Use Case Diagram
	Class Exercise | Discussion
	Use Case Diagram | Discussion
	Use Case Diagram | Sample Solution
	Class Diagram

